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J Klaftert, G ZumofenS and A BlumenP 
t Schooi oi Chemistry, Tel-Aviv University, Tel-Aviv, 69978 Israel 
i Laboratorium f i r  Physikalische Chemie, ETH-Zentrum, CH-8092 Ziirich, Switzerland 
D Physics Institute and BIMF, University of Bayreuth, W-8580 Bayreuth, Federal Republic 
of Germany 

Received 21 May 1991 

Abstract. In this paper we present numerical calculations for the propagator P(r ,  I ) ,  the 
probability to reach a distance r a t  time f having started at the origin at I = 0, on Sierpinski 
gaskets. The results are confronted with approximate analytical expressions. It ir shown 
that P(r, I ) -  r d ' % ( ( ) ,  where ( is the scaling variable: f =  r / t ' )d* .  In the short-f regime 
the scaling function follosws the form Il (c)-e .xp(-c ,@),  while for large 6, n(() is givcn 
asymptotically byII(()- f" exp(- &), with n = ( d , - d W / 2 ) / ( d ,  - 1) and Y = d,/(d,- I ) .  
This result extends the previously derived expressions. The numerically observed oscilla- 
tions which are superimposed on the power-law decay of the autocorrelation function 
P ( r = O ,  I )  are analysed in terms of typical residence times on hierarchical substructures. 

Fractals have been extensively studied as models for geometrically disordered systems. 
They are known to display anomalous diffusion which is characterized by the sublinear, 
dispersive behaviour of the time evolution of the mean-squared displacement [ l ]  

( r 2 ( f ) ) -  t2"W (1) 

with d,>2. Here, dW=2dJd, ,  where df is the fractal dimension and d, the spectral 
dimension. Equation (1) follows from the scaling properties of the fractal structure, 
whose dw va_!ue can in  senera! he determined by renormalization techniques [ l j ~  

Another quantity of interest is the (ensemble averaged) autocorrelation function 
P(0, f), the probability to be at the origin at time f having started at the origin at f = 0. 
P(0,  f )  is related to the vibrational density of states of the fractal and to the mean 
number of sites visited by a random walker of the structure. P(0 ,  f )  has been shown 
t o  scale according to [l ,  21 

A more complicated and still open question is the nature of the propagator P (  r, f), 
the (ensemble averaged) probability to reach a distance r at time f having started at 
the origin a t  time zero. Several derivations have been proposed for P(r,  0, which lead 
t o  the relation [ l ]  

_I I , - .  

P ( r ,  f j - f - " s ' w ( ~ j  (3)  

where the scaling variable 6 of the scaling function ll is c = r / t ' / " .  This choice is 
dictated by the fact that the prefactor of n in (3) has to agree with ( 2 )  and the second 
moment has to be compatible with (1). 
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A stretched exponential form is generally accepted for the scaling function, i.e. 
II(c)-exp(-Cc’). Banavar and Willemsen [3] (BW) based their analysis on the 
Chapman-Kolmogorov relation (CKR) and found the exponent Y to be u=d,. 
O’Shaugnessy and Procaccia [4,5] (OP) introduced the generalized diffusion equation 

where K is a generalized diffusion coefficient. The solution of this partial differential 
equation is straightforward, leading to 

Pop(r, t ) -  t-”’’ exp(-Co,gd-) ( 5 )  

which obeys the form proposed by Banavar and Willemsen [3]. Furthermore, in [5] 
the constant Cop was calculated for a particular symmetric location of the origin (as 
is given in figure l (a) ) ,  which resulted in 

Cop= ( d +  l)dXd,-dr)T/di. ( 6 )  

A different form for P(r,  1) was obtained by Guyer [6], who started from numerical 
reoormalization results in the Laplace space. He proposed the form 

(7) 

where U is the Laplace variable, PG(r, U )  is the Laplace transform of PG(r. f )  and 
p = l /dw.  Guyer calculated P(r ,  f )  in the time domain by first inverting the power law 
and the exponential separately and then inferred that approximately 

pG( r, U )  - ud~/’- ’  exp(-cGru6) 

PG(r, t ) -  t-dq/zexp(-alg”) (8) 

where now the exponent Y equals dw/(dw-l ) .  Recently, Van den Broeck [7,8] also 
obtained the form given in (7) by analytical reoormalization considerations. Further- 
more, (8) was also derived by Barlow and Perkins (BP) [9]. Evidently, there is a 
discrepancy between the v-values reported by BW and OP on the one hand and by 
Guyer, Van den Broeck and BP on the other; this leads to the observation that these 
forms are limiting laws and to the fit of the numerical results by a single averaged 
exponent fi  intermediate between the two forms [l, 101. 

Recently, the propagator P(r ,  I )  has attracted much attention in the analysis of 
both the transient [ l l ,  121 and the steady state [13] A+B+O reaction; in the former 
P(r,  t )  plays a major role in the calculation of the density-difference function [ l l ,  121, 
whereas for the latter the generalized diffusion operator of (4) was used [13]. Further- 
more, P(r ,  f) appears in studies of superlocalization in the hopping conductivity on 
fractal media [lo, 141. 

Figure 1. Schematic representation of the Sierpinski gasket structures used in the numerical 
calculation. ( a )  The origin chosen in the numerical calculation of P ( r ,  1 )  is denoted by a 
dot and the ,-axis is as indicated. ( b )  The Structure used to calculate P(0 ,  I )  with origins 
chosen within the shaded area in order to avoid finite size effects. 
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The purpose of this paper is to find P(r,  1 )  numerically on Sierpinski gaskets and 
to compare the results with approximate analytical forms. In  particular we highlight 
the cross-over in the behaviour of P(r,  t) between the small- and the large-5 regimes 
and analyse i t  in detail. 

We now study numerically the propagator P(r ,  t ;  r,, to)  for continuous time random 
walks (CTRWS) on Sierpinski gaskets by solving the master equation 

p ( r , t ;  ~ n , ~ ~ ) = ~ 2 d ~ ~ ~ ’ ~ [ P ~ r , , ~ ; ~ ~ , ~ ~ ~ - ~ ~ r , f ; ~ ~ , ~ 0 ~ l  (9) 
I ,  

where the sum runs over the nearest neighbours of site r, d is the Euclidean dimension 
and T the hopping time. As initial condition we take 

P(r ,  0; Po, 0) =&. (10) 

In general, one should note that P(r,  t )  as used above is the radial average of P(r,  t ) ,  
which itself is a structure-averaged quantity, ( P ( r +  r,, t;  ro,O)),a. Similarly, P ( 0 ,  t )  in 
(2) is also a structure-averaged function: ( P ( r ,  f ;  r, t ) ) , .  In our numerical calculation 
we choose for ro in (9) a symmetric point, which is at the top of one of the main 
triangles and for the presentation of the r-dependence of P(r ,  1;  r,, 0 )  an axis along 
the side of the main triangle, as indicated in figure l ( a ) .  For this particular condition 
we urnow me iiuIiieriCai prupagaror uy r t r ,  r j .  111 tiit. numerical icaiizdiwn use wa3 

made of the symmetry of the problem so that only one main triangle was considered 
in the computation of P(r ,  t ) .  

Proceeding, we will compare the numerical results with the analytical forms given 
in (S), (7) and (8 ) .  Moreover, as discussed in the appendix, we also consider the 
expression 

J ._.I ~ -..---I.., L~~ n,.. .\ 1- .L. .... _ . . I  .~.. 

psP( r, t )  - a,t-‘*‘’ 5 ,, exp(-a15’) ( 1 1 )  

where U is still u=d,/(d,-l) and a is given by a=(df-d,/2)/(d,-1). Equation 
( 1 1 )  differs from the scaling form (8) by the term 5“ in front of the exponent. Our 
study in the appendix suggests that ( 1 1 )  is exact to first order, and from the comparison 
to the simulation calculations the prefactor 5“ turns out to be significant. (Higher-order 
terms to (11)  can be calculated in principle but they do not improve the description 
significantly, since Guyer’s form, ( 7 ) ,  is itself an approximation.) In order to establish 
the range of validity of the small- and large-5 regimes and to highlight the cross-over 
behaviour of P(r ,  1) we present our numerical results in three different ways. 

In figure 2 we plot for Sierpinski gaskets embedded in d = 3 the form P( r, t ) /P (O,  t)  
against 5 on linear scales for I / T =  10, lo2, 10’ and lo4. The numerical results are 
compared with the approximate forms Pop(r, t ) ,  PG(r, t ) ,  (obtained from direct Laplace 
inversion of (7)), and P,,(r, t ) ,  The plotted curves demonstrate that for small &values 
the op-approximation describes the simulation results quite well. Systematic deviations 
are obvious for large 5. It appears that generally the scaling behaviour of P(r, t)  with 
5 is more pronounced for large 5-values. Furthermore, in the range where PG(r, t )  
represents P( r, t )  well, PSp( r, t )  approximates it well too. At r = 0 the slopes of PG( r, t)  
and of PJr,  t) deviate from zero but one should bear in mind that these forms are 
valid for the large-r regime. Obviously, such moments which are dominated by the 
central part of P (  r, t )  can be determined satisfactorily from Pop( r, 1 )  while the moments, 
which are determined mainly by the wings of the distribution, cannot be obtained from 
Pop(r, f )  alone [61. 
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Figure 2. The propagator P(r, 1 )  an linear scales. Plotted are P(r,  i ) /P(O,  I )  against the 
scaling variable f for times I / r  = 10, IO2, IO', 10' and for the embedding dimension d = 3. 
The shon-broken line gives P d r ,  11 ,  the chain line indicates the Po(,, t). and the long- 
broken line denotes PJr ,  I ) .  

In order to show the variation of the exponent v, we plotted in figure 3 on log-log 
scales P(r,  t)/P(O, 1 )  against f .  As in figure 2, the simulation results are confronted 
with approximate forms. We notice that each of the two forms, Pop and Po, fits the 
simulation results in a different regime. To show the slow convergence of v the effective 
exponent, v,,=Jln{-ln[P,(r, t)/PG(O, t)]}/JIn 1, is plotted in the insert. The two 
broken lines given in the insert indicate the lower and the upper bounds, d w / ( d w - l )  
and d,, respectively. 

To illustrate more clearly the validity ranges of the two approximate forms Pop( r, 1 )  

and PG(r, t )  we plotted in figure 4 -In[P(r, t)/P(O, f)]C0,(" as full lines and 
In[P(r, t)/P(O, t)]/ln[P,(r, f ) / P o ( O ,  t ) ]  as broken lines. If the theore6cal predictions 
hold exactly, horizontal lines at an ordinate value of unity would appear. The full 

c 0 

Figure 3. As in figure 2 but on log-lag scales. The insert shows the effective exponent Y . ~  

and the broken lines in the insert denote the lower bound v = d , / ( d , - l ) ,  and the upper 
bound Y = d,,  respectively. 
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Figure 4. nhe cross-over behaviour between different (-regimes. Platted are the 
ratios of  the simulation results over the expected theoretical predictiona 
In[P(r, l ) /P(O,  l)]/ln[PX(r, t)/P,(O, t ) ] :  full lines for X = O P  and broken lines for x = G .  

The times chosen are as indicated. 

lines show a marked cross-over behaviour at . $ = l ,  clearly indicating that Pop(r, I) 
holds only for .$< 1. The broken lines illustrate that PG(r, 1 )  applies for 5' 1 and that 
the asymptotic description holds better at longer times. This is due to the fact that the 
asymptotic form is valid for r < f / T  if compared with discrete lattice results from CTRW. 

We point out that for fixed stepping frequencies one has P(  r, I )  = 0 for r > I/ T. Here 
the largest value of r is rmax= 1028 while the values of 1 were: f / T =  10, lo', 10' and 
lo4. Only for t / T =  lo4 is rmax< I / T  obeyed. The figure shows that the constant COP 
fits the result to an accuracy of 5%. For d = 3 the fit is better while for d = 4 it is off 
by 20%. Numerically determined values of C, are given in table 1; in this case of 
d = 2 the C,  value agrees with that given by Van den Broeck [8]. 

We now turn to the question whether the C K R  provides any information ahout 
P(r ,  1 ) .  The CKR was considered by Banavar and Willemsen [3] to obtain the exponent 
Y = d ,  and was also discussed by Guyer [6J. For discrete lattices, the CKR takes the form 

P ( r , ~ ; r , , O ) = x f ( r , r ; r , , f ~ ) P ( r , , f , ;  ro,O) 1 * 1 , 3 O  ( 1 2 )  
,I 

where r, runs over all lattice sites. For the particular case r = r, and I = 21, ,  and 
considering the symmetry of the propagator, P ( r ,  f; ro, 0 )  = P ( r o ,  1 ;  r,O) from (9), one 
has 

p ( r , 2 f ;  r , O ) = x P * ( r , t ; r , , O )  (13) 
I ,  

Table 1. Exponential prefactors which enter in (6)  and (7 )  

d C " P  CG 

2 0.650 1.96' 
3 0.700 2.30 
4 0.715 2.56 

In agreement with the value reponed in [B]. 
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and the structural average of the RHS of (13) gives 

This relationship appears in the derivation of the density-difference function in the 
transient A + B + O  reaction [11,121. Thus, a detailed analysis of P(0, t )  is important. 
Interestingly, for Sierpinski gaskets P(0, f )  does not follow a simple form but rather 
shows oscillations superimposed on the power-law decay as previously observed [5]. 
The periods of the oscillations are related to the typical time spent on a hierarchical 
substructure. In order to study the periods we propose the following hierarchical 
approach. We denote by T. the characteristic time the particle needs to traverse the 
substructure at the nth iteration. Thus 

(15) 

where use was made of the fact that for Sierpinski gaskets dW=ln(d+3)/ln(2).  We 
further assume that all sites of a substructure at the nth iteration are equally populated 
for times I: T. < f < T,,+, and take for the number of sites of a SubstNCture the asymptotic 
value (d+l )" .  An approximate form for the autocorrelation function can thus be 
written as a sum of exponentials: 

(16) 

acts as a phaseshift on a logarithmic time-scale. To 

P(0,  t ) - B ( f / T ) - d s ' 2  (17) 

B = br(d,/2)/[4ds" ln(d+3)] 

T , + , / T ,  = 2d- = d + 3  

P(0, f ) =  b E ( d + l ) - "  exp[-(d+3)-"+t/~] 

where b is a constant and 
reconcile the power-law decay we replace the sum by an integration and find 

with 

where ds = 2 In(d + l) / ln(d +3) is the spectral dimension of the Sierpinski gasket. In 
table 2 the constants b, + and B are collected for several embedding dimensions d. 
The constants b and + were adjusted to results obtained from the numerical solution 
of (9) for origins chosen randomly (to avoid finite size effects) in the centre substructure 
as demonstrated in figure I(b) and averages were taken over 100 different origins. 

Figure 5 shows the numerical results and an analysis of the oscillations. Plotted 
are P(0, f ) t d S "  against f on linear scales for several embedding dimensions d. The 
oscillations are clearly visible in the figure and it turns out that the structural average 
does not wash out the oscillatory behaviour. The approximate form given by sums of 
exponentials, (16). and indicated by broken lines, reproduces the periods for all d. 
For small dimensions d there are deviations between the calculated and the 

Table 2. Constanls which enter in (16) and (11). 

2 0.439 1.30 0.302 
3 0.355 0.95 0.246 
4 0.323 0.89 0.207 
6 0.246 0.75 0.156 
13 0.134 0.62 0.078 
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Figure 5. Structure-averaged autocorrelation function plotted as P(0, t ) fd*” .  Full lines for 
P ( 0 , t )  taken from simulation calculations and broken lines for P(0, I )  calculated from 
(16). The dimensions d are as indicated. 

simulated P(0,  t )  amplitudes hut the agreement becomes much better with increasing 
dimension d. 

In summary, the propagator P ( r ,  I )  shows clearly two different regimes. As long 
as e<< 1, P (  r, 1 )  obeys the Banavar-Willemsen and O’Shaugnessy-Procaccia form quite 
well; for 5 >> 1 the behaviour of P( r, t )  is described by the Guyer form. The diffusion 
equation put forward by OShaugnessy and Procaccia is appropriate in treating the 
diffusion on small length scales; however, it is not valid for large r distances. This 
explains why Pop(r, 1 )  is a good approximate form for small 6. In the large-t regime 
the correct first-order term obtained from the saddle point approximation to the Guyer 
form, ( l l ) ,  provides a reasonable description of the decay. In fact it turns out that the 
additional power is important in the description and thus this problem is comparable 
to the problems encountered in two different fields: in the trapping problem in I D  [15] 
and in the description of the propagator for enhanced diffusion in random velocity 
fields [i6J. Furthermore, the autocorreiation function PjO, t j  can be describied b y  a 
sum of exponentials, which is useful in higher dimensions d, where the numerical 
calculations are not easily extended to long times. 
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Appendix 

In this appendix we derive the first-order correction term of the large-6 behaviour of 
P ( r ,  I ) .  We use the saddle-point approximation for the Laplace inversion of the form 
proposed by Guyer [ 6 ]  given in (7) of the main text: 

P ( r ,  u)=Aud>”- ’  exp(-C,ruP) r > O  (AI) 
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where A is a normalization constant. We follow the methods discussed by Daniels 
[17] and Helfland [18] and write the Laplace inverted form as the integral: 

r+im 

du u ' ~ / ~ - '  exp(-CGruP + ut) .  (A2) I C - i m  

P(r ,  t )=A/ (Zr i )  

We introduce two additional functions to write a short form of the integrand: 

exp(-C,ruP + u r )  (A31 
d(,,) e-$(") = ,d,/2-1 

and $(U)= C G r u P - u ~ .  The dominant term of the asymptotic 

(A4) 
Although the integration has to be taken along a path in the complex plane, the case 

re.! .xis, 19 fn!!nws from 
symmetry arguments. Thus, the saddle point is obtained by setting the first derivative 
to zero: 

(A5) 

d J - 1  with +(,)=U 
behaviour obtains from the saddle-point approximation which reads 

P ( r ,  I )  - ~ ( u o ) [ 2 r $ " ( u o ) ] - ' / '  e-*'"J. 

cC)nE.jdprpd here is simple beca..e the sadd!e paint is on 

*'(u)I.=* = pC,ruP-' - rl.=,=o. 
Solving for U,, and inserting U,, into (A4) gives 

P( r, I )  - a , r - d ~ / 2 ~ "  e-'hs" (A6) 

with 

a (dr- dw/2)/(dw - 1) and Y = (1  - /3- '  (A7) 

a,= A [ i r ( l  -Bjj-::2(scGja (Axj 

and with the constants 
. . ~ - ... 

a,  = id ,  - 1 )( pc,) ". 
These constants were used to calculate Psp(r, 1 )  in figures 2 and 3 and to fit the 
coefficients C,, which are presented in table 1 for d = 3 and 4. 
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